Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Clin Pharmacol Ther ; 115(2): 188-200, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37983584

RESUMO

CAR-T therapies have shown remarkable efficacy against hematological malignancies in the clinic over the last decade and new studies indicate that progress is being made to use these novel therapies to target solid tumors as well as treat autoimmune disease. Innovation in the field, including TCR-T, allogeneic or "off the shelf" CAR-T, and autoantigen/armored CAR-Ts are likely to increase the efficacy and applications of these therapies. The unique aspects of these cell-based therapeutics; patient-derived cells, intracellular expression, in vivo expansion, and phenotypic changes provide unique bioanalytical challenges to develop pharmacokinetic and immunogenicity assessments. The International Consortium for Innovation and Quality in Pharmaceutical Development (IQ) Translational and ADME Sciences Leadership Group (TALG) has brought together a group of industry experts to discuss and consider these challenges. In this white paper, we present the IQ consortium perspective on the best practices and considerations for bioanalytical and immunogenicity aspects toward the optimal development of CAR-T and TCR-T cell therapies.


Assuntos
Neoplasias Hematológicas , Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Linfócitos T , Neoplasias/metabolismo , Imunoterapia Adotiva
2.
Bioanalysis ; 15(14): 773-814, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37526071

RESUMO

The 2022 16th Workshop on Recent Issues in Bioanalysis (WRIB) took place in Atlanta, GA, USA on September 26-30, 2022. Over 1000 professionals representing pharma/biotech companies, CROs, and multiple regulatory agencies convened to actively discuss the most current topics of interest in bioanalysis. The 16th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy, cell therapy and vaccines. Moreover, in-depth workshops on ICH M10 BMV final guideline (focused on this guideline training, interpretation, adoption and transition); mass spectrometry innovation (focused on novel technologies, novel modalities, and novel challenges); and flow cytometry bioanalysis (rising of the 3rd most common/important technology in bioanalytical labs) were the special features of the 16th edition. As in previous years, WRIB continued to gather a wide diversity of international, industry opinion leaders and regulatory authority experts working on both small and large molecules as well as gene, cell therapies and vaccines to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance, and achieving scientific excellence on bioanalytical issues. This 2022 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2022 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 3) covers the recommendations on Gene Therapy, Cell therapy, Vaccines and Biotherapeutics Immunogenicity. Part 1 (Mass Spectrometry and ICH M10) and Part 2 (LBA, Biomarkers/CDx and Cytometry) are published in volume 15 of Bioanalysis, issues 16 and 15 (2023), respectively.


Assuntos
Medicamentos sob Prescrição , Tecnologia , Bioensaio/métodos , Biomarcadores/análise , Terapia Baseada em Transplante de Células e Tecidos
3.
AAPS J ; 25(4): 55, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37266912

RESUMO

A survey conducted by the Therapeutic Product Immunogenicity (TPI) community within the American Association of Pharmaceutical Scientists (AAPS) posed questions to the participants on their immunogenicity risk assessment strategies prior to clinical development. The survey was conducted in 2 phases spanning 5 years, and queried information about in silico algorithms and in vitro assay formats for immunogenicity risk assessments and how the data were used to inform early developability effort in discovery, chemistry, manufacturing and control (CMC), and non-clinical stages of development. The key findings representing the trends from a majority of the participants included the use of high throughput in silico algorithms, human immune cell-based assays, and proteomics based outputs, as well as specialized assays when therapeutic mechanism of action could impact risk assessment. Additional insights into the CMC-related risks could also be gathered with the same tools to inform future process development and de-risk critical quality attributes with uncertain and unknown risks. The use of the outputs beyond supporting early development activities was also noted with participants utilizing the risk assessments to drive their clinical strategy and streamline bioanalysis.


Assuntos
Desenvolvimento de Medicamentos , Humanos , Consenso , Medição de Risco/métodos
4.
Mol Ther Methods Clin Dev ; 26: 471-494, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36092368

RESUMO

Immunogenicity has imposed a challenge to efficacy and safety evaluation of adeno-associated virus (AAV) vector-based gene therapies. Mild to severe adverse events observed in clinical development have been implicated with host immune responses against AAV gene therapies, resulting in comprehensive evaluation of immunogenicity during nonclinical and clinical studies mandated by health authorities. Immunogenicity of AAV gene therapies is complex due to the number of risk factors associated with product components and pre-existing immunity in human subjects. Different clinical mitigation strategies have been employed to alleviate treatment-induced or -boosted immunogenicity in order to achieve desired efficacy, reduce toxicity, or treat more patients who are seropositive to AAV vectors. In this review, the immunogenicity risk assessment, manifestation of immunogenicity and its impact in nonclinical and clinical studies, and various clinical mitigation strategies are summarized. Last, we present bioanalytical strategies, methodologies, and assay validation applied to appropriately monitor immunogenicity in AAV gene therapy-treated subjects.

5.
Front Immunol ; 13: 915412, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967308

RESUMO

Aggregates of therapeutic proteins have been associated with increased immunogenicity in pre-clinical models as well as in human patients. Recent studies to understand aggregates and their immunogenicity risks use artificial stress methods to induce high levels of aggregation. These methods may be less biologically relevant in terms of their quantity than those that occur spontaneously during processing and storage. Here we describe the immunogenicity risk due to spontaneously occurring therapeutic antibody aggregates using peripheral blood mononuclear cells (PBMC) and a cell line with a reporter gene for immune activation: THP-1 BLUE NFκB. The spontaneously occurring therapeutic protein aggregates were obtained from process intermediates and final formulated drug substance from stability retains. Spontaneously occurring aggregates elicited innate immune responses for several donors in a PBMC assay with cytokine and chemokine production as a readout for immune activation. Meanwhile, no significant adaptive phase responses to spontaneously occurring aggregate samples were detected. While the THP-1 BLUE NFκB cell line and PBMC assays both responded to high stress induced aggregates, only the PBMC from a limited subset of donors responded to processing-induced aggregates. In this case study, levels of antibody aggregation occurring at process relevant levels are lower than those induced by stirring and may pose lower risk in vivo. Our methodologies can further inform additional immunogenicity risk assessments using a pre-clinical in vitro risk assessment approach utilizing human derived immune cells.


Assuntos
Anticorpos Monoclonais , Leucócitos Mononucleares , Anticorpos Monoclonais/uso terapêutico , Citocinas , Humanos , Imunidade Inata , Medição de Risco
6.
Biotechnol Bioeng ; 119(8): 2088-2104, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35437754

RESUMO

Host cell proteins (HCPs) are a significant class of process-related impurities commonly associated with the manufacturing of biopharmaceuticals. However, due to the increased use of crude enzymes as biocatalysts for modern organic synthesis, HCPs can also be introduced as a new class of impurities in chemical drugs. In both cases, residual HCPs need to be adequately controlled to ensure product purity, quality, and patient safety. Although a lot of attentions have been focused on defining a universally acceptable limit for such impurities, the risks associated with residual HCPs on product quality, safety, and efficacy often need to be determined on a case-by-case basis taking into consideration the residual HCP profile in the product, the dose, dosage form, administration route, and so forth. Here we describe the unique challenges for residual HCP control presented by the biocatalytic synthesis of an investigational stimulator of interferon genes protein agonist, MK-1454, which is a cyclic dinucleotide synthesized using Escherichia coli cell lysate overexpressing cyclic GMP-AMP synthase as a biocatalyst. In this study, a holistic characterization of residual protein impurities using a variety of analytical tools including nanoscale liquid chromatography coupled to tandem mass spectrometry, together with in silico immunogenicity prediction of identified proteins, facilitated risk assessment and guided process development to achieve adequate removal of residual protein impurities in MK-1454 active pharmaceutical ingredient.


Assuntos
Proteínas , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Preparações Farmacêuticas , Proteínas/análise , Medição de Risco
7.
J Pharm Sci ; 111(4): 960-969, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35122828

RESUMO

Immunogenicity to biologics is often observed following dosing in human subjects during clinical trials. Both product and host specific factors may be implicated in contributing to a potential immune response. However, even if such risk factors are identified and eliminated as part of the rational quality by design approaches, the outcome in clinic can be uncertain and challenging to predict. Several tools have been employed to identify these risk factors and consequent mitigation approaches implemented prior to dosing in humans. However, the complexity of the immune system with an interplay of network of immune cells involved in driving a long- term immune response as well as patient characteristics, can make it challenging to predict the outcome in clinic. This perspective will provide an insight into recent advances in the risk assessment approaches that are utilized during preclinical stage of development of a biologic. The outputs from such tools can help to rank order and select the most optimal candidate with the least likelihood of an immune response and can further drive the development of a clinical bioanalytical and immunogenicity monitoring strategy. Such a strategy can be proactively shared with the regulators along with the proposal to streamline clinical immunogenicity and personalizing the outcome based on pharmacogenomics and other patient-related factors. This paper provides a roadmap on performing risk assessments through a systematic identification of risks and their mitigations wherever possible. Recommendations on incorporating the key components of such risk assessments as part of the new regulatory submissions are also provided. Shorter abstract Immunogenicity to biologics is common during clinical trials. Both product and host specific factors have been implicated. Several risk assessment tools can be used to identify and mitigate the risk factors responsible for immunogenicity. An insight into recent advances in the risk assessment approaches will be presented. The outputs can define a risk score and guide the clinical bioanalytical and immunogenicity monitoring strategy. A roadmap on performing risk assessments through a systematic identification of risks and their mitigations wherever possible is provided. Best practices for a risk assessment strategy and recommendations on the content for IND and the Integrated summary of Immunogenicity are also provided.


Assuntos
Produtos Biológicos , Humanos , Medição de Risco , Fatores de Risco
8.
MAbs ; 14(1): 1993522, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34923896

RESUMO

A major impediment to successful use of therapeutic protein drugs is their ability to induce anti-drug antibodies (ADA) that can alter treatment efficacy and safety in a significant number of patients. To this aim, in silico, in vitro, and in vivo tools have been developed to assess sequence and other liabilities contributing to ADA development at different stages of the immune response. However, variability exists between similar assays developed by different investigators due to the complexity of assays, a degree of uncertainty about the underlying science, and their intended use. The impact of protocol variations on the outcome of the assays, i.e., on the immunogenicity risk assigned to a given drug candidate, cannot always be precisely assessed. Here, the Non-Clinical Immunogenicity Risk Assessment working group of the European Immunogenicity Platform (EIP) reviews currently used assays and protocols and discusses feasibility and next steps toward harmonization and standardization.


Assuntos
Anticorpos Monoclonais , Imunoconjugados , Anticorpos Monoclonais/efeitos adversos , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Humanos , Imunoconjugados/efeitos adversos , Imunoconjugados/imunologia , Imunoconjugados/uso terapêutico , Medição de Risco
9.
J Pharm Sci ; 110(3): 1025-1041, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33316242

RESUMO

The pharmaceutical industry has experienced great successes with protein therapeutics in the last two decades and with novel modalities, including cell therapies and gene therapies, more recently. Biotherapeutics are complex in structure and present challenges for discovery, development, regulatory, and life cycle management. Biotherapeutics can interact with the immune system that may lead to undesired immunological responses, including immunogenicity, hypersensitivity reactions (HSR), injection site reactions (ISR), and others. Many product and process related critical quality attributes (CQAs) have the potential to trigger or augment such immunological responses to the product. Tremendous efforts, both clinically and preclinically, have been invested to understand the impact of product and process related CQAs on adverse immunological effects. The information and knowledge are critical for the implementation of Quality by Design (QbD), which requires risk assessment and establishment of specifications and control strategies for CQAs. A quality target product profile (QTPP) that identifies the key CQAs through process development can help assign severity scores based on safety, immunogenicity, pharmacokinetics (PK) and pharmacodynamics (PD) of the molecule. Gaps and future directions related to biotherapeutics and emerging novel modalities are presented.


Assuntos
Indústria Farmacêutica , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Medição de Risco
10.
Front Immunol ; 11: 1301, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32695107

RESUMO

Immune responses to protein and peptide drugs can alter or reduce their efficacy and may be associated with adverse effects. While anti-drug antibodies (ADA) are a standard clinical measure of protein therapeutic immunogenicity, T cell epitopes in the primary sequences of these drugs are the key drivers or modulators of ADA response, depending on the type of T cell response that is stimulated (e.g., T helper or Regulatory T cells, respectively). In a previous publication on T cell-dependent immunogenicity of biotherapeutics, we addressed mitigation efforts such as identifying and reducing the presence of T cell epitopes or T cell response to protein therapeutics prior to further development of the protein therapeutic for clinical use. Over the past 5 years, greater insight into the role of regulatory T cell epitopes and the conservation of T cell epitopes with self (beyond germline) has improved the preclinical assessment of immunogenic potential. In addition, impurities contained in therapeutic drug formulations such as host cell proteins have also attracted attention and become the focus of novel risk assessment methods. Target effects have come into focus, given the emergence of protein and peptide drugs that target immune receptors in immuno-oncology applications. Lastly, new modalities are entering the clinic, leading to the need to revise certain aspects of the preclinical immunogenicity assessment pathway. In addition to drugs that have multiple antibody-derived domains or non-antibody scaffolds, therapeutic drugs may now be introduced via viral vectors, cell-based constructs, or nucleic acid based therapeutics that may, in addition to delivering drug, also prime the immune system, driving immune response to the delivery vehicle as well as the encoded therapeutic, adding to the complexity of assessing immunogenicity risk. While it is challenging to keep pace with emerging methods for the preclinical assessment of protein therapeutics and new biologic therapeutic modalities, this collective compendium provides a guide to current best practices and new concepts in the field.


Assuntos
Proteínas/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Terapia Biológica/efeitos adversos , Terapia Biológica/métodos , Biomarcadores , Consenso , Citocinas/metabolismo , Avaliação Pré-Clínica de Medicamentos , Humanos , Imunidade Inata , Mediadores da Inflamação/metabolismo , Proteínas/uso terapêutico , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
11.
Br J Haematol ; 190(6): 923-932, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32311075

RESUMO

Antibodies to first-generation recombinant thrombopoietin (TPO) neutralized endogenous TPO and caused thrombocytopenia in some healthy subjects and chemotherapy patients. The second-generation TPO receptor agonist romiplostim, having no sequence homology to TPO, was developed to avoid immunogenicity. This analysis examined development of binding and neutralising antibodies to romiplostim or TPO among adults with immune thrombocytopenia (ITP) in 13 clinical trials and a global postmarketing registry. 60/961 (6·2%) patients from clinical trials developed anti-romiplostim-binding antibodies post-baseline. The first positive binding antibody was detected 14 weeks (median) after starting romiplostim, at median romiplostim dose of 2 µg/kg and median platelet count of 29.5 × 109 /l; most subjects had ≥98·5% of platelet assessments showing response. Neutralising antibodies to romiplostim developed in 0·4% of patients, but were unrelated to romiplostim dose and did not affect platelet count. Thirty-three patients (3·4%) developed anti-TPO-binding antibodies; none developed anti-TPO-neutralising antibodies. In the global postmarketing registry, 9/184 (4·9%) patients with spontaneously submitted samples had binding antibodies. One patient with loss of response had anti-romiplostim-neutralising antibodies (negative at follow-up). Collectively, anti-romiplostim-binding antibodies developed infrequently. In the few patients who developed neutralising antibodies to romiplostim, there was no cross-reactivity with TPO and no associated loss of platelet response.


Assuntos
Anticorpos Neutralizantes , Vigilância de Produtos Comercializados , Púrpura Trombocitopênica Idiopática , Receptores Fc , Proteínas Recombinantes de Fusão , Sistema de Registros , Trombopoetina , Adulto , Idoso , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Ensaios Clínicos como Assunto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Contagem de Plaquetas , Púrpura Trombocitopênica Idiopática/sangue , Púrpura Trombocitopênica Idiopática/tratamento farmacológico , Púrpura Trombocitopênica Idiopática/imunologia , Receptores Fc/administração & dosagem , Receptores Fc/imunologia , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/efeitos adversos , Proteínas Recombinantes de Fusão/imunologia , Estudos Retrospectivos , Trombopoetina/administração & dosagem , Trombopoetina/efeitos adversos , Trombopoetina/imunologia
12.
AAPS J ; 19(6): 1587-1592, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28971356

RESUMO

In silico HLA-binding algorithms and in vitro T cell-based assays as predictive tools for human immunogenicity risk have made inroads in the biotherapeutic drug discovery and development process. Currently, these tools are being used only for candidate selection or characterization and not for making a go/no-go decision for further development. A clear limitation for a broader implementation is the lack of correlation between the predicted T cell epitope content/immune reactivity potential of a biotherapeutic and the subsequent ADA-related clinical immunogenicity outcome. The current state of technologies and their pros and cons were discussed as a part of the 2016 AAPS National Biotechnology Conference in a themed session. A review of the advances in the area and the session talks along with the ensuing discussions are summarized in this commentary.


Assuntos
Terapia Biológica , Descoberta de Drogas , Indústria Farmacêutica , Algoritmos , Epitopos de Linfócito T , Ativação Linfocitária , Linfócitos T/imunologia
13.
Bioanalysis ; 9(23): 1849-1858, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29020795

RESUMO

BACKGROUND: Titer methods are commonly used to characterize the magnitude of an antidrug antibody response. Assay S/N is an appealing alternative, but the circumstances under which use of signal-to-noise (S/N) is appropriate have not been well defined. RESULTS: We validated both titer and S/N-based methods for several therapeutics. S/N correlated strongly with titer both in aggregate and when examined on a per subject basis. Analysis of impact of antibody magnitude on pharmacokinetics yielded the same result using either method. Each assay demonstrated excellent precision, good linearity, and adequate drug tolerance. CONCLUSION: Under these circumstances, assay S/N is a valid alternative to titer for assessment of the magnitude of an antidrug antibody response.


Assuntos
Anticorpos Anti-Idiotípicos/análise , Anticorpos Monoclonais/imunologia , Anticorpos Anti-Idiotípicos/imunologia , Anticorpos Monoclonais/sangue , Reações Antígeno-Anticorpo , Humanos , Imunoensaio , Medições Luminescentes , Razão Sinal-Ruído
14.
AAPS J ; 19(3): 599-602, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28247192

RESUMO

With more than 100 therapeutic proteins (TP) approved since the first EMA guidance on immunogenicity in 2007, a vast amount of clinical experience with a variety of therapeutic proteins has been gained. This has provided data on anti-drug antibodies (ADA) and their observed clinical impact, or lack thereof. It has become evident that not all ADA responses are clinically relevant. The current "standard practice" is to test for ADA in all patients on every study. It is essential that we acknowledge the immunogenicity data gained from marketed TPs and that options for immunogenicity testing reflect this information. Improvements in bioanalytical support throughout the drug development process will eliminate extraneous, non-impactful practices. We propose that low-risk therapeutic proteins could be supported with an event-driven ("collect-and-hold") immunogenicity testing strategy throughout early phases of the clinical program. In the absence of an event, only pivotal studies (where ADA incidence and impact can be decisively assessed) would include default ADA testing. In keeping with the "standard practice," immunogenicity risk assessment must be an on-going and real-time evaluation. This approach has the potential to deliver meaningful, clinically relevant immunogenicity results while maintaining an emphasis on patient safety.


Assuntos
Avaliação de Medicamentos/métodos , Imunidade Ativa , Proteínas/uso terapêutico , Ensaios Clínicos como Assunto , Humanos , Proteínas/imunologia
15.
Clin Immunol ; 149(3): 534-55, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24263283

RESUMO

Protein therapeutics hold a prominent and rapidly expanding place among medicinal products. Purified blood products, recombinant cytokines, growth factors, enzyme replacement factors, monoclonal antibodies, fusion proteins, and chimeric fusion proteins are all examples of therapeutic proteins that have been developed in the past few decades and approved for use in the treatment of human disease. Despite early belief that the fully human nature of these proteins would represent a significant advantage, adverse effects associated with immune responses to some biologic therapies have become a topic of some concern. As a result, drug developers are devising strategies to assess immune responses to protein therapeutics during both the preclinical and the clinical phases of development. While there are many factors that contribute to protein immunogenicity, T cell- (thymus-) dependent (Td) responses appear to play a critical role in the development of antibody responses to biologic therapeutics. A range of methodologies to predict and measure Td immune responses to protein drugs has been developed. This review will focus on the Td contribution to immunogenicity, summarizing current approaches for the prediction and measurement of T cell-dependent immune responses to protein biologics, discussing the advantages and limitations of these technologies, and suggesting a practical approach for assessing and mitigating Td immunogenicity.


Assuntos
Produtos Biológicos/imunologia , Imunidade Celular/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/imunologia , Formação de Anticorpos , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Bioensaio , Produtos Biológicos/administração & dosagem , Biomarcadores Farmacológicos/análise , Citocinas/administração & dosagem , Citocinas/imunologia , Avaliação Pré-Clínica de Medicamentos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/administração & dosagem , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Simulação de Acoplamento Molecular , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/imunologia , Linfócitos T/imunologia
16.
Bioanalysis ; 5(20): 2495-507, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24138623

RESUMO

BACKGROUND: Immunogenicity support during nonclinical biotherapeutic development can be resource intensive if supported by conventional methodologies. A universal indirect species-specific immunoassay can eliminate the need for biotherapeutic-specific anti-drug antibody immunoassays without compromising quality. By implementing the R's of sustainability (reduce, reuse, rethink), conservation of resources and greener laboratory practices were achieved in this study. RESULTS: Statistical analysis across four biotherapeutics supported identification of consistent product performance standards (cut points, sensitivity and reference limits) and a streamlined universal anti-drug antibody immunoassay method implementation strategy. CONCLUSION: We propose an efficient, fit-for-purpose, scientifically and statistically supported nonclinical immunogenicity assessment strategy. Utilization of a universal method and streamlined validation, while retaining comparability to conventional immunoassays and meeting the industry recommended standards, provides environmental credits in the scientific laboratory. Collectively, individual reductions in critical material consumption, energy usage, waste and non-environment friendly consumables, such as plastic and paper, support a greener laboratory environment.


Assuntos
Anticorpos Monoclonais/sangue , Técnica Indireta de Fluorescência para Anticorpo/normas , Química Verde/normas , Imunoglobulina G/sangue , Medições Luminescentes/normas , Animais , Especificidade de Anticorpos , Química Verde/instrumentação , Humanos , Imunoconjugados/química , Medições Luminescentes/instrumentação , Macaca fascicularis/sangue , Macaca fascicularis/imunologia , Camundongos , Coelhos , Reprodutibilidade dos Testes , Rutênio/química , Sensibilidade e Especificidade , Especificidade da Espécie , Estudos de Validação como Assunto
17.
AAPS J ; 15(3): 856-63, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23653044

RESUMO

The administration of human biotherapeutics is often associated with a higher incidence of immunogenicity in preclinical species. The presence of anti-drug antibodies (ADAs) in the test samples can affect the accurate measurement of therapeutic protein (TP) in bioanalytical methods designed to support pharmacokinetic (PK) and toxicokinetic (TK) assessments. The impact can vary depending on the bioanalytical method platform and study dosing design. The goal of this study is to evaluate the impact of ADA response on the bioanalytical methods in support of PK/TK and the associated study data interpretation. Sprague Dawley rats were administered with four weekly doses of 50 mg/kg TP, a humanized monoclonal antibody. The TP in serum samples was measured using three bioanalytical methods that quantified bound and/or unbound TP to ADA. The ADA response in the animals was classified into negative, low, medium, and high based on the magnitude of the response. The presence of ADA in samples led to discrepant TP measurements between the methods, especially at time points where the TP concentrations were low. This could be due to ADA interference to the accurate measurement of ADA-bound TP concentrations. The TP concentration at last time point (C last) was reduced by 82.8%, 98.6%, and 99.8%, respectively, for samples containing low, medium, and high levels of ADA. The interfering effects of the ADA on bioanalytical methods and exposure were evident as early as 2 weeks post-dosing. This modeling approach can provide the better understanding of ADA impact on PK exposure in multiple doses.


Assuntos
Anticorpos/sangue , Fatores Biológicos/sangue , Preparações Farmacêuticas/sangue , Animais , Anticorpos/imunologia , Fatores Biológicos/farmacocinética , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Camundongos , Ratos , Ratos Sprague-Dawley
18.
Bioanalysis ; 2(4): 721-31, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21083270

RESUMO

BACKGROUND: Specificity and sensitivity are essential in assays for immunogenicity assessment of biotherapeutics. Nonspecific interactions from excess therapeutic or anti-therapeutic antibody, soluble ligands (e.g., target receptor), or serum proteins associated with autoimmune conditions (e.g., rheumatoid factor) in samples can impact the detection of a true anti-therapeutic response. RESULTS: Electrochemiluminescence-based bridging assay formats could eliminate the interference due to rheumatoid factor with no pretreatment with Melon Gel™ or aggregated IgG. The interference due to soluble factors was not platform specific for the four therapeutics evaluated in this study. CONCLUSION: Melon Gel pretreatment and avidin high-bind (Meso Scale Discovery) plates can effectively reduce interference due to rheumatoid factor in ELISA- and electrochemiluminescence-based assays, respectively. Excess levels of therapeutic and anti-therapeutic antibodies in bridging assays can impact assay specificity.


Assuntos
Bioensaio/métodos , Imunidade/efeitos dos fármacos , Preparações Farmacêuticas/análise , Métodos Analíticos de Preparação de Amostras , Anticorpos/sangue , Anticorpos/imunologia , Artefatos , Humanos , Imunoensaio , Ligantes , Preparações Farmacêuticas/metabolismo , Solubilidade
19.
Ann Hematol ; 89 Suppl 1: 75-85, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20155267

RESUMO

Romiplostim is an Fc-peptide fusion protein that activates intracellular transcriptional pathways via the thrombopoietin (TPO) receptor leading to increased platelet production. Romiplostim has been engineered to have no amino acid sequence homology to endogenous TPO. Recombinant protein therapeutics can be at a risk of development of an antibody response that can impact efficacy and safety. Hence, a strategy to detect potential antibody formation to the drug and to related endogenous molecules can be useful. The immunogenicity assessment strategy involved both the detection and characterization of binding and neutralizing antibodies. The method for detection was based on a surface plasmon resonance biosensor platform using the Biacore 3000. Samples that tested positive for binding antibodies in the Biacore immunoassay were then tested in a neutralization assay. Serum samples from 225 subjects with immune thrombocytopenic purpura (ITP) dosed with romiplostim and 45 ITP subjects dosed with placebo were tested for romiplostim and TPO antibodies. Prior to romiplostim treatment, 17 subjects (7%) tested romiplostim antibody positive and 12 subjects (5%) tested TPO antibody positive for pre-existing binding antibodies. After romiplostim exposure, 11% of the subjects exhibited binding antibodies against romiplostim and 5% of the subjects with ITP showed binding antibodies against TPO. The antibodies against romiplostim did not cross-react with TPO and vice versa. No cases of anti-TPO neutralizing antibodies were detected in romiplostim-treated subjects. The incidence of anti-romiplostim neutralizing antibodies to romiplostim was 0.4% (one subject); this subject tested negative at the time of follow-up 4 months later. No impact on platelet profiles were apparent in subjects that had antibodies to romiplostim to date. In summary, administration of romiplostim in ITP subjects resulted in the development of a binding antibody response against romiplostim and TPO ligand. One subject developed a neutralizing antibody response to romiplostim that impacted the platelet counts of this subject. No neutralizing antibodies to endogenous TPO were observed.


Assuntos
Anticorpos Neutralizantes/imunologia , Púrpura Trombocitopênica Idiopática , Receptores Fc/imunologia , Proteínas Recombinantes de Fusão/imunologia , Trombopoetina/imunologia , Anticorpos/imunologia , Anticorpos/isolamento & purificação , Anticorpos Neutralizantes/isolamento & purificação , Formação de Anticorpos , Ensaios Clínicos como Assunto , Humanos , Púrpura Trombocitopênica Idiopática/tratamento farmacológico , Púrpura Trombocitopênica Idiopática/imunologia , Receptores Fc/uso terapêutico , Receptores de Trombopoetina/agonistas , Proteínas Recombinantes de Fusão/efeitos adversos , Proteínas Recombinantes de Fusão/uso terapêutico , Trombopoetina/efeitos adversos , Trombopoetina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA